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Figure 1: Tree modeling via mid-air finger sketching. (a) The user draws a set of 3D strokes (top row) to produce tree lobes (bottom
row). (b) Lobes are arranged in 3D space and main skeletons are drawn to connect them. (c-d) Small branches and leaves are
recursively populated in lobes to generate a full 3D tree model: (c) rendering result from front view, (d) side view.

ABSTRACT

2D sketch-based tree modeling cannot guarantee to generate plausi-
ble depth values and full 3D tree shapes. With the advent of virtual
reality (VR) technologies, 3D sketching enables a new form for 3D
tree modeling. However, it is labor-intensive and difficult to create
realistically-looking 3D trees with complicated geometry and lots
of detailed twigs with a reasonable amount of effort. In this paper,
we explore the use of mid-air finger 3D sketching in VR for tree
modeling. We present a hybrid approach that integrates freehand 3D
sketches with an automatic population of branch geometries. The
user only needs to draw a few 3D strokes in mid-air to define the
envelope of the foliage (denoted as lobes) and main branches. Our
algorithm then automatically generates a full 3D tree model based
on these stroke inputs. Additionally, the shape of the 3D tree model
can be modified by freely dragging, squeezing, or moving lobes in
mid-air. We demonstrate the ease-of-use, efficiency, and flexibility
in tree modeling and overall shape control. We perform user studies
and show a variety of realistic tree models generated instantaneously
from 3D finger sketching.

Index Terms:
Human-centered computing—Human computer interaction

(HCI)—Interaction paradigms—Virtual reality; Computing
methodologies—Computer graphics—Shape modeling

1 INTRODUCTION

Realistic 3D tree models play an important role in movies, games,
and applications such as city and landscape planning. In the past
decades, a number of 3D tree generation methods have been devel-
oped. These methods can be roughly divided into three categories:
procedural tree modeling [26,29], sketch-based tree modeling [6,21],
and data-driven tree reconstruction [20,36]. For novice users, it is not
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easy to generate 3D tree models using procedural modeling or data-
based reconstruction methods since these two types of approaches
either require specialized knowledge of biology or expensive equip-
ment to capture data from real trees. Therefore, sketch-based tree
modeling is a much more intuitive alternative to freely creating
3D tree models. However, previous sketch-based methods are all
based on 2D sketches drawn on tablets or desktop screens and suffer
from generating plausible depth values and full 3D tree shapes. The
ease-of-use and flexibility on shape control of generated tree models
remain challenging, especially for content designers or artists during
the conceptual design stage. Also, the instantaneous feedback - 3D
display of the generated intermediate tree models following through
sketching - is essential for creating a fluent user experience.

With the advent of VR technologies, it is possible to directly draw
in 3D and intuitively see the drawing result from different views.
This enables the user a new form for 3D tree modeling. To the best
of our knowledge, this paper presents the first time the use of mid-air
finger 3D sketching in VR for tree modeling and editing. Since
trees can be complex in geometry with many structural nuances
and foliage details, it is extremely labor-intensive and difficult, if
not impossible, to draw all the details using a conventional VR
modeling system [1, 10, 13, 30, 32]. Fortunately, the most important
characteristics of a tree are its main branches and the envelopes
that describe dense regions of the foliage (denoted as lobes) [19].
Based on this observation, we present a novel 3D-sketch-based tree
modeling method that combines freehand 3D sketches of the user
with rule-based branch and foliage generation. The user only needs
to focus on the high-level inputs by simply sketching in mid-air
to control the overall tree shape (skeletons and lobes), while the
detailed branches and leaves are automatically synthesized in the
lobes using a rule-based method. We use finger sketching instead
of more accurate pen drawing because finger interaction is more
natural and agile and it is just enough to accurately depict the overall
shape of a tree.

As shown in Figure 2, the user freely draws in mid-air using
his/her fingers. The movement of the fingers is tracked by a Leap
Motion controller attached to the front of a VR headset and converted
to a series of 3D strokes. These strokes are then stitched to generate
tree lobes. Subsequently, the user only needs to sketch some more
3D strokes to depict the main branches of a tree. Small branches
and twigs in the lobes are synthesized using a rule-based tree growth
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Figure 2: Our mid-air sketching based tree modeling system. (a) Hardware setup: an HTC VIVE VR glass with Leap motion. (b) The workspace
from a user’s perspective. The 3D movements of hands are directly captured by Leap motion. (c) The control panels that allow the user to switch
the modeling stages and manipulate the tree appearance.

method. In this paper, we design a simple but effective shape-guided
method to generate these structures instantaneously during sketching
(see an example in Figure 1). The main contributions of our method
are:

• An immersive mid-air finger sketching interface for easy-to-
use and real-time tree modeling and editing. To the best of our
knowledge, this is the first exploration of a VR-based interface
for realistic tree modeling.

• A hybrid 3D-sketch-based tree modeling approach that com-
bines the user’s high-level inputs (several 3D strokes to define
the overall tree shape) and the automatic population of branch
geometries. This enables even novice users without botani-
cal skills to focus on the overall tree shapes, which are then
automatically evolved into detailed and realistic tree models.

• A flexible tree editing tool that enables local and global shape
control based on the abstract representation of a tree model
using lobes and skeletons.

2 RELATED WORKS

Tree modeling. Trees can be synthesized automatically using rule-
based procedural modeling approaches. L-systems [16] and their
extensions [27–29] are the most famous recursive algorithms that
utilize a set of generative rules to grow complex branching structures.
Such algorithms can yield a wide variety of tree species [7]. How-
ever, it is difficult to devise a collection of rules to simulate particular
tree structures, especially for modelers without understanding the
intricate growing processes and their software programming. To cir-
cumvent this, Deussen and Lintermann [8, 17] developed the Xfrog
technique that combines the power of rule-based algorithms with
geometric modeling. Instead of directly growing trees with given
rules, Stava et al. [35] presented an inverse procedural method to
estimate the optimal parameters for growing trees into a target shape.

To simulate a biologically plausible growth process, Runions et
al. [31] proposed the space colonization algorithm by considering
the competition of branches for space. Palubicki et al. [26] exploited
Runions et al.’s idea and devised a self-organization algorithm to
generate more realistic tree models. These methods were subse-
quently extended to model trees with desired shapes by properly
distributing the initial points within a specific envelope [21]. In-
stead of filling the space with a huge number of attractor points,
Wang et al. [38] presented a method by formulating tree growth as
an optimization process. All these methods, however, do not meet
artists’ requirements, since they work fully automatically. Moreover,
growth simulations cost lots of computing time and thus are not
suitable for real-time applications.

On the other hand, data-driven synthesis is a recent trend in
tree modeling that constructs trees from real-world data such as
photographs [11, 36], videos [15], and 3D scanned point clouds [20,
41]. But such methods are devised for real tree reconstruction, and it
is outside their scope to model virtual trees with the desired shape.

Interactive Tree modeling. Due to the complex branching and
foliage structure, the fully manual creation of trees is almost im-
possible for modelers. Therefore, several interactive sketch-based
approaches were proposed to reduce the effort of users. Okabe et
al. [23] generate 3D branches from 2D sketches by maximizing
distances between branches. Ijiri et al. [12] develop the Sketch
L-system where the growth of a tree is controlled by a single user-
drawn stroke. Chen et al. [6] infer a full 3D model from freehand
sketches using probabilistic optimization with a database of trees
as priors. Wither et al. [39] propose a sketch-based interface to
construct full 3D branching structures from 2D silhouettes of fo-
liage. TreeSketch [21] is a more advanced system for modeling trees
with a multi-touch tablet based on procedural methods. This system
provides a set of interactive tools to control the form of the tree,
e.g., brushes and lasso tools. However, all these methods infer the
3D information indirectly from a collection of 2D strokes, which
is inconvenient for artists that want to directly control the 3D form
of a tree. A method to allow this is presented by Onishi et al. [25].
They propose an interactive L-system to create tree models with 3D
gesture input. However, this method only supports 3D sketching of
main branches; Creating free-form 3D silhouettes of tree crowns is
beyond its capability.

3D modeling systems in VR. Sketch-based modeling is getting
mature over the past decades [24]. The growth of consumer-grade
VR devices enable users to sketch 3D strokes directly in mid-air. As
a result, researchers have developed a range of techniques for 3D
modeling based on immersive VR systems. Industrial software, such
as OculusMedium [22] and ShapeLab [33], allows users to create
and manipulate sophisticated shapes with multiple sculpting tools.
Other systems [10, 14, 32] enable the modeler to directly draw a
range of sweeping surfaces in 3D space. However, these systems
require modeling expertise and it costs a lot of time to create complex
shapes since the users have to accurately draw all details of the target
objects. Recently, Google released the TiltBrush [37] which allows
users to create surfaces by collections of nearby 3D strokes. Rosales
et al. [30] extended this method and proposed the SurfaceBrush
technique for converting 3D strokes to a manifold surface. These
methods are also laborious since the users have to draw a mass of
stroke ribbons to fully cover the surface. Some researches [2, 3]
indicate that drawing precisely using a VR controller is challenging
due to the inaccuracy in depth and the user’s general lack of spatial
orientation. This also makes it difficult to directly sketch details of
complex shapes.
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Several 3D sketching approaches were proposed to reduce user
workload and improve user experience. A 3D sketching system using
sketch planes leverages a generative design algorithm to inspire the
design, but the success of such interaction depends to a large extent
on the accuracy and speed with which users can choose their desired
sketch planes [13]. Bohari et al. [4] studied how to recognize a user’s
stroke-hover intention for mid-air sketching. Arora et al. [1] built
the SymbiosisSketch system that combines 3D mid-air interactions
with precise 2D sketching to create detailed 3D shapes. However,
modeling objects with intricate details like trees is still laborious
using this approach. Xing et al. [40] proposed the HairBrush system
to model 3D hair. The user just draws several guiding strips, and then
a neural network will predict the most plausible hairstyles. Inspired
by this idea, we design a hybrid tree modeling approach that enables
users to sketch several 3D strokes to depict the overall shape of
the foliage (lobes) and the main branches of a tree. The detailed
tree structure is then synthesized inside the lobes by a generative
algorithm automatically.

3 SYSTEM OVERVIEW

As shown in Figure 1, the user freely draws in mid-air using his/her
fingers. The movement of fingers is tracked by a Leap Motion
controller attached to the front of a VR headset and converted to a
series of 3D strokes. These strokes are then connected to generate
the tree lobes. In addition, the user only needs to sketch some more
3D strokes to depict the main branches of a tree.

Figure 2 shows the actual hardware environment and the user
interface. Using a VR headset the user freely sketches in mid-air
using his/her fingers and hands. The movements are tracked by a
Leap Motion controller attached to the front of the VR headset and
converted to a series of 3D strokes, then the 3D strokes are connected
to generate the tree lobes and finally the full 3D tree model. All the
functions are illustrated in the accompanying video.

The user interface contains a number of buttons that are frequently
used while sketching or manipulating the tree (cf. Figure 2 (c)). The
three buttons of the Basic panel are used for switching between the
different modeling phases: lobe sketching, trunk sketching, and tree
synthesis. If the lobe shapes do not meet the requirements of the
user, two editing tools are provided in the Editing panel for dragging
or squeezing the strokes and lobe meshes. The Appearance panel
provides options to change the appearance and rendering parameters
of the created tree.

The remainder of the paper is organized as follows: we start in
Section 4 by describing lobe generation from 3D sketching, followed
by our approach for lobe-based tree modeling (Section 5). In Section
6, we discuss the modeling results and user evaluation, followed by
conclusions, limitations, and future work (Section 7).

4 LOBE GENERATION FROM 3D SKETCHING

To model a tree, the user first creates a set of lobes to depict the
overall shapes of tree crown. A number of VR techniques [10, 14,
30,37] have been presented for producing 3D shapes by employing a
mass of 3D strokes, ribbons or sweeping surface. All these methods,
however, are designed to intently create 3D models with fine details
from a lot of accurate user sketches that are very time consuming.
To improve the speed and ease of use of tree modeling, we develop a
simple but efficient modeling algorithm that only requires a few 3D
strokes for constructing the mesh of a lobe. The user sketches 3D
strokes continually and the strokes are stitched automatically one by
one until the desired lobe is created. The mesh of a lobe is updated
immediately once a new stroke is added. Finally, a remeshing
technique [5] is adopted for obtaining high-quality triangle meshes.

4.1 Stroke Generation and Sampling
A stroke is described as a set of successive points P =
{p1, p2, ..., pN}, which are recorded sequentially when the 3D move-

Figure 3: Mesh strip generation from two closed strokes (top row),
an open and a closed stroke (bottom row). (a) Two input strokes and
sampling points (red dots); (b) Interpolate points (green dots), starting
points (blue rectangles), and barycentric directions (gray lines); (c)
Initial mesh stripes by connecting point pairs; (d) Final mesh after
snapping the interpolated points to their neighboring sampling points.

Figure 4: Finding starting points (blue rectangles) to stitch two strokes.
(a) Bad starting points: the pair of points have the nearest Euclidean
distance; (b) Good starting points: the pair of points have the closest
barycentric directions.

ment of the finger is larger than a given minimum distance. However,
for connecting the strokes and obtaining a triangle mesh, directly
using such a large number of points is quite inefficient. Therefore,
we utilize a sampling process to obtain a few key points that can
preserve the overall shape of the stroke well. Our sampling algo-
rithm is based on the principle that more points are needed at the
segments with sharp bends, but less at smooth segments with low
curvature. Therefore, we utilize curvature as the sampling weight.
Given a stroke consisting of a dense point set P, we first compute
the curvature κi at each point pi. Starting from a random point, we
collect key points by visiting the point set P sequentially with a
variable moving step. The moving step at point pi is computed as:

∆(pi) = bk · log2 (2.0+1/ρ)c (1)

where ρ = max(κi,0.01). Thus, the next visited index of a point
after the current point pi is (i+∆(pi)). The logarithmic function
is used for slowing down the growth of steps when the curvature
decreases. The default value of k is 2, and the range of steps is
within the interval [2,13] obtained by the sharpest and the smoothest
position (κi =+∞ and 0.01, respectively). Figure 3 (1.a) and (2.a)
show examples of stroke sampling results, where the red dots are
the sampled key points.

4.2 Stroke Stitching and Lobe Generation
Then the lobes can be produced by generating mesh strips between
two neighboring strokes. Figure 3 illustrates the process of generat-
ing mesh strips between two strokes. There are two types of strokes:
closed and open ones. A stroke is considered closed if its starting
and end points are nearby. The open stroke is used for enclosing
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Figure 5: Our system updates the mesh strips progressively according
to the user input. From left to right: the first stroke, three progressively
added strokes and corresponding mesh strips, the generated lobe
after remeshing.

Figure 6: Editing tools. (a) Stroke editing: the user first selects a
segment of stroke using the thumb and the index finger, then adjusts
the stroke by moving a green control point. (b) Lobe mesh editing
using a pinching gesture.

the hole formed by the closed stroke, thus the modelers are able to
create a sealed silhouette if needed. Below, we explain how to form
a manifold mesh in different conditions.

Condition 1: two closed strokes. The red dots are sampling points.
To facilitate the later point-to-point matching, we first equalize the
number of points on the two strokes. Specifically, for the stroke with
fewer points, we repeatedly insert a new point (in green) between
two adjacent points at the maximum gap using cubic interpolation
until the numbers of points become the same. Then we match points
in pairs and form the initial triangle strip in sequential order. Before
that, we need to determine a good starting point pair on the two
strokes that are first connected. An intuitive method is to choose two
points that have the nearest Euclidean distance [9]. However, this
method is not robust and only works when two strokes are close. As
shown in Figure 4, the bottom of the right stroke is far away from the
bottom but near to the upper of the left stroke, Figure 4 (a) shows a
bad point pair with the nearest Euclidean distance. The two starting
points should have similar features that reflect the overall shape and
trend of the stroke. We found that the barycentric direction is a
good feature to find the start point pair. The barycentric direction
of a point pi can be calculated approximately as the average of the
directions formed by pi and the other points on the stroke:

dirbarycentric (pi) = normalize(
N

∑
k=0

pk− pi),k 6= i (2)

A good starting point pair for stroke stitching can be set as points
with the closest barycentric direction, as shown in Figure 4 (b).
As shown in Figure 3(c), after finding the starting points (blue
rectangles) with the closest directions, the mesh strips are formed by
sequentially connecting points in the strokes. Finally, after getting
the initial mesh strips, we move each interpolated point (green dot)
pnew to its nearest sampling point (red dot) pori. The edges attached
to pnew are directly devolved to pori. This operation is to ensure that

Figure 7: Process of branch growth under the guidance of the lobe
for a single iteration. (a) Lobe and the initial main skeleton; (b) The
points of the lobe are clustered into groups by associating them to
the nearest branch node. (c) A second partition for large clusters. (d)
Nodes produce new subtrees directed by the clusters.

the generated mesh is a manifold when stitching 3 or more strokes.
The lobe mesh is updated in real time when the modeler sketches
new strokes. The added new stroke is stitched to it’s closest stroke.

Condition 2: an open and a closed stroke. As shown in the bottom
row of Figure 3, given an open stroke A and a closed stroke B, we
should find two starting points on Stroke B corresponding to the two
endpoints of Stroke A. Such two matching points of Stroke B have
the barycentric directions closest with the extension directions of
two endpoints of stroke A. Thus, stroke B is divided into two parts
located at the two sides of stroke A. Subsequently, we interpolate
new points on stroke B to create the same number of vertices as for
stroke A on the two sides of stroke B. Then, triangle strips can be
generated by connecting each point of stroke A with the matching
points on the two parts of B. Finally, we adopt the mesh reduction
step mentioned above to remove the interpolated points. Figure 3
(2.d) shows an example of the resulting surface.

With the above strategies, mesh strips can be generated between
any two neighboring strokes. For multiple strokes, our system
updates the meshes progressively according to the user input. As
shown in Figure 5, a new stroke will be connected to the existing
mesh immediately once drawn. Note that the drawing order of
strokes can be varying. When the user draws a new stroke between
two existing strokes, our system will update the local mesh stripes
according to the current adjacency. And the final mesh is obtained by
incremental remeshing [5], which takes as input a mesh and feature
edges (the user-drawn strokes in our case) for producing high-quality
meshes.

Lobe editing. We provide several editing tools for the modeler
to further adjust and manipulate the shape of lobes. As shown in
Figure 6 (a), the user can adjust the stroke using special gestures.
The region of interest is determined by two fingers that indicates the
endpoints (red dots) of a stroke segment. Then the user can deform
the stroke by moving a control point (in green) based on the Bezier
curve. Moreover, we also allow users to directly edit the lobe mesh
as shown in Figure 6 (b). A pinching gesture is used for adjusting
the mesh based on Laplacian surface editing [34, 42].

5 LOBE-BASED TREE MODELING

Once the lobes have been obtained, we are able to generate the full
3D tree model. Existing shape-guidance methods [21, 38] focus on
modeling quality and are very time-consuming. Considering the
real-time interaction requirements of VR applications, we developed
a simple but effective 3D shape guided approach for modeling a tree
in seconds.
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Figure 8: The optimal growth direction VVV cluster is computed as the
weighted average of the normalized vectors VVV i formed by the node
and attractor point i.

Figure 9: Examples of mesh generation from two free-form strokes
(blue lines). (a) Meshes generated from different strokes; (b) Meshes
generated from two strokes that are placed with different included
angles (0, 60, and 90 degree angles or so).

5.1 Initialization
A tree can be described as a hierarchically organized structure [7,26].
A node is a point composing a branch and probably attached by
leaves. A branch is the part of stem between two successive nodes.
The nodes that have the probability to generate new branches are
called active nodes.
Library of subtrees. In the pre-processing step we built a library
that provides a set of predefined elementary subtrees for handling
large varieties of trees (see Figure 7 top). To complete a tree, our
synthesis process iteratively produces a subtree for each active node.
Note that the initial length of all the library subtrees is set to a unit
length. During tree growth, subtrees are scaled adaptively according
to the size of the tree at the current iteration.
Sketching the main trunk. To better control the branching struc-
ture and specify the connections among multiple lobes, the user can
also sketch several 3D strokes for depicting main trunks, as shown
in Figure 1 (b). To construct a tree skeleton from such 3D strokes,
we first take the stroke that has the lowest point as the initial main
branch, and then select the most adjacent stroke from the remaining
strokes to add into the current tree skeleton successively, until all
strokes are used.

5.2 Tree Growth
Our tree growing approach uses a recursive generative algorithm.
The basic idea is that each active node will iteratively produce a
subtree until the branches fully fill the given lobes. To produce a
plausible branching structure, we use the vertices of the lobes as
attractor points for guiding branch growth. Figure 7 illustrates the
growth procedure for a single iteration. It consists of the following
two steps:

First step: At the beginning of each iteration, we associate each
attractor point of the lobe with the nearest branch node (red dots),
this allows us to cluster attractor points into groups. Figure 7 (b)

Figure 10: Example lobes generated from multiple strokes (blue lines).

shows the clustering result in which the clusters are marked with dif-
ferent colors. The nodes that are allocated with clusters of attractor
points are considered as active nodes, which are able to produce new
branches in the current iteration. However, especially during early
growth stages, when the number of branch nodes is still small, this
tends to produce large clusters. Thus, large clusters are divided into
vertical and horizontal directions. Figure 7 (c) describes the vertical
split in which the cluster is projected onto a unit sphere. θv and θh
denote the vertical and horizontal span angles. If θv or θh is larger
than a given threshold t, the cluster will be partitioned uniformly
using the corresponding direction. Therefore, a large cluster can
produce dθh/te×dθv/te pieces. The user can also adjust the value
of threshold t to manipulate the density of branches.

Second step: Once the clusters are obtained, we then produce
a subtree for each active branch node. As shown in Figure 8, the
blue dots are the attractor points associated with the red branch node.
VVV cluster denotes the growth direction, calculated by the weighted
average of the normalized vectors VVV i formed by the node and the
attractor point i, that is, VVV cluster =

∑di×VVV i
∑di

, where di denotes the
Euclidean distance from the node to point i. Using the distance as
the weight can help to guide the new branch to grow towards bulgy
and distant regions and this way balance the branching structure.
In addition we consider effects such as gravity, the actual growth
direction is calculated as: VVV A = VVV cluster +αVVV de f ault + βVVV gravity,
where VVV de f ault is the head orientation of the node, and VVV gravity =

(0,−1,0)T is the direction of gravity. The default value of α and
β is set to 0.8 and -0.3, respectively. The length of the subtree is
proportional to the distance between the node and the lobe surface.
A branch node stops growing when its distance to the lobe surface is
less than a threshold value of 1e-5 (set heuristically). Note that the
clusters of attractor points that are attached to a stop node will not
participate in the next iteration.
Branch geometry and leaf population. The tree branching geom-
etry is the polygon model using a set of generalized cylinders. The
branch diameters are calculated basipetally and accumulated along
tree axes [26]. The leaves (quads with alpha textures) are arranged
on branches according to specified tree species, and distributed at
the tip nodes along branch directions with a random deviation angle.
The users are able to control the tree appearance by adjusting the
parameters, e.g., the average leaf length and width, and the number
of leaves at one node.

6 MODELING RESULTS AND USER EVALUATION

Our tree modeling system was implemented in C# with Unity. All
the results were obtained on a PC with 3.6 GHz i7-4790 CPU.

6.1 Modeling Results

Results of lobe generation. We first discuss the effectiveness of
our lobe generation algorithm. Figure 9 shows several example
meshes generated by connecting two irregular strokes. The generated
surfaces keep manifolds and non-overlapping well. Figure 9 (b) also
illustrates the effects when the modeler places two strokes with
different included angles. Note that, even if the strokes are almost
orthogonal, mesh strips can also be well generated. Figure 10 shows

821



Figure 11: Different main trunks can affect the branching structure in
the lobe.

Figure 12: Modeling results with various placements of the lobes.

3 complex-shaped lobes that are constructed only from a small
number (4, 6, and 9) of strokes.

Results of tree modeling. To demonstrate the modeling abilities
of our approach, we reconstructed a variety of trees with diverse
branching types and foliage. Figure 19 shows several modeling
results with reference to the photographs of Japanese bonsai trees.
Modeling such trees is quite difficult for existing systems since their
main trunks are bent heavily and the foliage consists of a number of
complicated lobes. Our method benefits from the direct 3D input,
and thus it can produce high-quality tree models that resemble the
target photos.

The branching structure generated within the lobe can be changed
by using different main trunks (see Figure 11). Moreover, the users
can also move and rotate the lobes freely to generate trees with
different overall shapes. Figure 12 (a-b) shows trees that adopt
different placements of lobes. Figure 12 (c) shows two swan-shaped
tree models flapping their wings to different angles. Figure 13 shows
a specially shaped tree targeted to letters ”V” and ”R” from front and
side view, respectively. The models are easy to create by moving
and rotating the four simple lobes in the upper left of Figure 13.

More tree modeling results with four different artistic shapes are
illustrated in Figure 20, where trees with rabbit, apple, tank, and
goblet shapes are constructed. We also provide an option for users
to get plausible trees directly from the silhouette points of external
3D models, as shown in Figure 14.

Overall, each tree takes about 1-5 minutes to create, which de-
pends on the complexity of the lobes. Since the modeling process
consists of three steps, including lobe sketching, main trunk sketch-
ing, and tree growth (branch propagation), we recorded the time of
each stage for several typical trees in Table 1. We noticed that the
most time-consuming stage is to design the lobes, especially for the
trees with desired artistic shapes. For example, the swan-shaped
tree in Figure 12 (c) takes the longest time among all our results for

Figure 13: A tree with ”V” and ”R” shape when viewed from the front
and side views.

Figure 14: Sample trees generated directly from external 3D models
(Stanford bunny, Nefertiti Bust and a cartoon cow).

designing lobes, since the user needs to intently draw and adjust the
strokes to make the appearance similar to a swan. Note that the tree
growth will be real-time once the lobes and main trunks are created.
Moreover, we found that users tend to decompose a complex shape
into a set of small lobes. Table 1 also recorded the stroke number of
lobes. Each lobe was just formed by the average of 5 strokes, even
for those in complex shapes like the swings and body of swan. This
demonstrates our system is able to depict free-form shapes using
only several interactions.

Table 1: Time spent in the three stages of tree modeling including
lobe generation, main trunk sketching, and tree growth.

Lobe
num.

Stroke num.
of lobes

Lobe
sketching

Trunk
sketching

Tree
growth

Fig. 11 (a) 1 5 0.3min 2s 0.096s
Fig. 12 (a-b) 4 22 1.2min 15s 0.310s
Fig. 12 (c) 3 16 4.6min 10s 0.172s

6.2 Comparison to Prior Methods

We compare the modeling results of our approach with prior sketch-
based tree modeling methods. Typical sketch-based methods [6, 23]
utilize 2D sketches for design and editing of tree branches, and suffer
from inferring 3D shape from 2D sketches. Such 2D sketch-based
methods require the user to carefully draw a large number of 2D
strokes to represent the branch skeleton as shown in Figure 15(a),
so the interaction is laborious for users. Moreover, it’s impossible
for the user to control or edit the 3D tree structure freely since the
3D information is inferred automatically based on simple botanical
assumption or a given database. By contrast, with the benefits of
direct 3D interaction, the users just need to define the overall shape
of foliage by several strokes instead of drawing numerous branching
details, and produce similar tree models.

Figure 16 compares our method with TreeSketch [21]. In
TreeSketch, trees are generated within an envelope that is inflated
from a 2D stroke drawn by the user. Thus, these tree models often
look flat and implausible from a side view. However, our result, with
the benefit of mid-air sketching, can be designed more artistically
and plausibly.
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Figure 15: Similar tree models generated by different methods. (a)
A tree generated by Chen’s method [6] requires a large number of
2D strokes (over 80 strokes) to represent the branch skeleton. (b) A
similar tree generated from a single lobe (4 strokes) and a few trunks
(9 strokes) using our method.

Figure 16: Comparison with TreeSketch [21]. (a) The result of
TreeSketch looks flat when observed from a side view. (b) The result-
ing tree with similar shape created by our system.

6.3 User Evaluation
To obtain feedback and evaluate our system, we invited 10 partic-
ipants to freely model the trees they wanted to create using our
system as well as two sketch based tree modeling systems, namely
Okabe et al.’s system [23] (a re-implemented version [18]) and
TreeSketch [21] (downloaded from app store). All participants had
experience with HMD VR applications. A brief tutorial regard-
ing all functions of the systems was provided before the task. We
had a short interview after the task and asked them to fill out the
questionnaires for subjective evaluation.

The statistical results are shown in Figure 17. We use the ques-
tionnaire to gather subjective ratings of users on three questions
[Rating: 1 = Strongly disagree; 10 = Strongly agree]. We are happy
to observe that the results indicate our system was consistently better
rated than others. All the participants stated that our system was
easy to use, and the intuitive mid-air sketching and editing facilitated
them to create 3D trees even if they don’t have too much modeling
experience. Several participants especially mentioned that the mid-
air sketching made them feel more creative than 2D sketching, and
that making lobes instead of making trees directly did reduce the
user workload and improve the modeling efficiency. We collected
reasons why they gave lower ratings to other methods. For Okabe
et al.’s method, they did not like to intently draw numerous smooth
strokes to represent branches. And they thought the 2D interactions
in TreeSketch were limited to express free-form shapes, since its
brush tool was just implemented by moving a sphere, and the lasso
tool only produced flat trees. By contrast, the greatest advantage
of our method is that the participants can directly design shapes in
3D and just need to sketch several lobes and main trunks to obtain
expressive 3D tree models.

In addition, some participants pointed out the weakness and pro-
vided useful suggestions for our system. One of them criticized
that the mid-air drawing might lead to slight fatigue when the arms
are kept lifted for a long time. Another participant suggested us to
provide more parameter control in the future for further adjusting
the branching distribution in lobes.

To observe how modelers communicate shapes, the participants
were also asked to create a 3D tree model according to the left photo

(Q1)Easy of Use (Q2)Satisfaction (Q3)Creativity
1

5

10

Sc
or

e

Okabe et al.[23]
TreeSketch[20]
Ours

Figure 17: Subjective responses to three questions. (Q1) Easy of use:
The interaction is easy to use. (Q2) Satisfaction: I am satisfied with
the modeling results. (Q3) Creativity: I felt creative while using this
system.

Figure 18: User study excerpts, showing the tree models created by
users according to a target photo.

in Figure 18. All the resulting models bear good resemblance with
the target photo. We notice that the participants depicted the tree
freely using diverse shapes and numbers of lobes, due to the personal
difference of observation. And the drawing styles of the same lobe
can be also varying. For example, the two blue lobes that represent
the same part of foliage in Figure 18 (a) and (c) were designed with
different directions of strokes. Therefore, the mid-air interaction can
give full play to the imagination and creativity of the users.

7 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We introduced a novel 3D sketch-based tree modeling system that
generates realistically-looking tree models by sketching in mid-air.
The system combines easy-to-use input methods in VR with rule-
based generation for the heavy amount of details of a tree model.
Only a few 3D strokes are needed to define the lobes and main
branches of a tree.

A number of problems remain open for further research. The
method works well for all those kinds of trees in which the foliage
can easily be described by lobes, this is not the case for some species.
The current version of the system also does not allow users to edit
the bark or other details of the branches. And the immersive VR
environment might cause vertigo for some people. As for the future
work, we would like to explore more interactive functions, and we
will enable users to change more parameters to design more species
of trees.
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Figure 19: Reconstructed tree models with reference to the photograph of Japanese bonsai trees. From left to right: photograph; lobes and main
skeleton; bare tree models without leaves; trees rendered from front and side views.

Figure 20: Several tree modeling results with artistic shapes.
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organic 3d shapes with the hand and tangible tools. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pp.
261–268, 2001.

[33] ShapeLab. Shapelab. https://store.steampowered.com/app/
571890/ShapeLab/, 2018.

[34] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-
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