
BuildingSketch: Freehand Mid-Air Sketching for Building Modeling

Zhihao Liu1,2*, Fanxing Zhang1*, Zhanglin Cheng1,2†

1 Shenzhen VisuCA Key Lab, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
2 Unversity of Chinese Academy of Sciences

Figure 1: Structured building modeling via BuildingSketch. (a) The user draws key strokes to outline the desired building block. (b-d)
BuildingSketch generates a detailed mesh model using procedural modeling based on the automatic interpretation of drawn strokes,
and then the user draws new strokes to create more building blocks. (e) Created building blocks are freely combined together by the
user after moving, and rotating to form a complex building model.

ABSTRACT

Advancements in virtual reality (VR) technology enable us to rethink
the way of interactive 3D modeling - intuitively creating 3D content
directly in 3D space. However, conventional VR-based modeling is
laborious and tedious to generate a detailed 3D model in full manual
mode since users need to carefully draw almost the entire surface. In
this paper, we present a freehand mid-air sketching system with the
aid of deep learning techniques for modeling structured buildings,
where the user freely draws a few key strokes in mid-air using his/her
fingers to represent the desired shapes and our system automatically
interprets the strokes using a deep neural network and generates a
detailed building model based on a procedural modeling method.
After creating several building blocks one by one, the user can freely
move, rotate, and combine the blocks to form a complex building
model. We demonstrate the ease of use for novice users, effective-
ness, and efficiency of our sketching system, BuildingSketch, by
presenting a variety of building models.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—Interaction paradigms—Virtual reality; Computing
methodologies—Computer graphics—Shape modeling

1 INTRODUCTION

Buildings are the most common man-made objects in the world, and
constructing 3D building models is important in a variety of applica-
tions such as movies, games, virtual reality, and urban planning, etc.
As a result, a number of building modeling methods have been de-
veloped in the last decades. These methods can be roughly differen-
tiated into three types: procedural building modeling [42, 47, 57, 67],

* Z. Liu and F. Zhang are joint first authors and contribute equally.

† Z. Cheng is the corresponding author.

Email: liuzh96@outlook.com, {fx.zhang, zl.cheng}@siat.ac.cn

data-driven building reconstruction [36, 43, 63, 68], and interactive
building modeling [11, 44, 46]. Data-driven methods reconstruct 3D
building models from aerial images or laser scanning point clouds
that are very expensive to capture. In contrast, procedural modeling
creates homogeneous models from well-defined grammars or rules
that are difficult to design even for expert users. Interactive building
modeling provides an intuitive way to generate 3D building mod-
els, which is more suitable for the conceptual design of a building.
However, existing professional interactive modeling tools, such as
Maya, 3ds Max, and blender, etc., are designed for expert users with
a steep learning curve and suffer from complex and tedious opera-
tions during the modeling process. And most interactive methods
for building modeling are based on inputs (sketching or drawing) on
2D displays like tablets or desktop screens, which require careful
sketching and are time-consuming to generate a detailed building
model.

Advancements in VR have made it possible to create and view
3D content directly in 3D space, which enables us to rethink the
approaches of 3D modeling. Recent work and commercial applica-
tions like Surfacebrush [54], Tilt Brush [21], Quill [17] explores 3D
drawing or sketching to create general objects using VR controller
and headsets. However, all these methods are laborious and tedious
to generate a detailed 3D model in full manual mode since users
need to carefully draw almost the entire surface of the model. In
addition, 3D drawing in mid-air is difficult to be accurate, especially
by users with low spatial ability [4, 5], which often hampers the
creation of delicate models like highly structured buildings. Rapid
3D building modeling for novice users with minimum and intuitive
input is demanded in ideation and conceptual design [16].

In this paper, we focus on the problem of progressively creating
user-desired models by novice users under VR platforms and present
an efficient and easy-to-use mid-air 3D sketching system for mod-
eling buildings. While Some VR sketching systems [2, 15] adopt
tablets as physical proxies to improve the drawing accuracy, a user
study carried out by Drey et al. [15] showed that users preferred to
operate with 3D mid-air sketching. So freehand finger sketching
in mid-air is adopted as the interactive mode in our system, which

329

2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)

978-1-6654-0158-6/21/$31.00 ©2021 IEEE
DOI 10.1109/ISMAR52148.2021.00049

Figure 2: Hardware and system configuration. (a) Hardware setup.
The user wears an HTC Vive VR headset attached with a Leap Motion
controller. (b) The workspace from user’s perspective. (c) The control
panel for switching operations and adjusting the building appearance.

ensures that users can draw freely in a very natural way and maxi-
mize their creative liberty. Since a building can be decomposed as a
combination of several simple primitive shapes including building
masses, roofs, as well as stairs, the user only needs to create some
primitives one by one and then freely move and rotate the primitives
to form a complex building model. In order to avoid tedious drawing
of the whole shape during the primitive creation, the user only needs
to roughly sketch a few key strokes in mid-air to outline the primitive
shape instead of drawing complete strokes as done in existing works.
Our system automatically translates the incomplete 3d strokes to
primitive type (i.e., building mass, roof, stair) using a deep neu-
ral network, and then a procedural modeling method is adopted to
generate a detailed mesh model of the primitive in real-time.

In summary, the main contributions of this work are:

• We propose a novel freehand mid-air sketching interface for
novice users to design 3D building models intuitively. To the
best of our knowledge, this is the first exploration of VR-based
interface for rapid building modeling.

• We combine rough 3D sketching and deep learning to minimize
the burden and accuracy requirements for mid-air sketching,
which frees users from low-level detail input to focus on the
overall building shape design.

• We decompose the 3D building creation task into progressive
building block design and combination problems.

2 RELATED WORKS

Modeling of buildings. Procedural modeling has become a pow-
erful framework for building generation since the pioneering work
of Parish et al. [47], and several follow-up studies [37, 42, 57, 67].
They utilize a set of procedural grammars or rules to produce a wide
variety of building models. However, those methods are based on
text rules, and are hard to use for novice users without grammar
expertise and architectural background. Even for professional mod-
elers, designing the proper grammar for creating specific shapes
remains a challenge. To circumvent this, Lipp et al. [65] introduce
a visual editing tool to visually create a simple rule base for shape
grammars. The editing process, however, is still tedious and not
intuitive because it is implemented in the form of a tree table. The
users need to drag a number of components into the tree table to
form the complete buildings. On the other hand, data-driven syn-
thesis is a recent trend in building modeling, which constructs 3D
building models from real-world data such as photographs [28, 73]
and 3D point clouds [8, 55]. However, such methods are devised
for the reconstruction of real buildings. Modeling a virtual building
from scratch is beyond their scope.

Sketch based modeling. Sketches have been widely exploited for
3D modeling due to flexibility. The famous Teddy system [31] was
one of the first attempts to construct 3D models from 2D sketches.
However, the method can only produce circular and symmetric

shapes that are just inflated from 2D silhouettes. Similar inflation
methods were adopted by MagicToon [18] and TreeSketch [40] to
create cartoon models or trees with flat shapes from 2D sketches.
In addition, many approaches have been proposed to infer more
complex 3D shapes from sketches, based on probabilistic optimiza-
tion [12], deep learning [24] and retrieval [38,69]. Please refer to [6]
for a great survey on sketch-based modeling.

There also exist several works dedicated to architecture modeling
from 2D sketches. The systems in [58, 62] allow the users to draw
outlines overlaid on a collection of 2D photographs, and then gen-
erate the corresponding 3D building by combining the 2D sketches
with multi-view stereo algorithms. Chen et al. [11] generate 2.5D
architectural geometries from freehand sketches based on topologi-
cal analysis. More recently, Nishida et al. [44] and Chen el al. [10]
leverage deep learning methods to reconstruct buildings from 2D
strokes. However, all these methods are based on 2D sketch input
and suffer from the need for predicting plausible 3D depths. Direct
3D control for geometries is beyond their capability.

3D modeling in VR. Advancement in VR technology enables us to
dive in and sketch directly in mid-air, and therefore researchers can
rethink the modeling tasks in a fresh way, for example using direct
3D interactions. Commercial systems like Oculus Medium [45] and
ShapeLab [60] offer a variety of powerful sculpting tools for creating
shapes from simple forms to complex designs. Other systems [23,
33, 54, 56, 66, 71] enable the users to draw a range of ribbons, wires,
or sweeping surfaces by moving a hand-held controller in 3D space.
Recent works [2,30,32] also try to improve the expressive qualities of
3D sketching by combining other approaches like generative design
and 2D interactions. However, all these methods are laborious since
the modelers have to carefully sketch the full details of the target.
More importantly, accurately drawing the intended strokes in VR
remains a challenge due to the inaccuracy in depth [1] and the lack of
user spatial ability [4,5]. Recently, a number of methods aim to help
lower the difficulty of modeling by using feature lines [48], gesture
recognition [7, 13, 29], plane constraint [3] and shape retrieval [20].
However, it is still difficult for these methods to create objects like
buildings that have intricate details and artificial structures.

Several systems have been proposed to simplify the interactions
for modeling specific objects such as 3D trees [39, 70, 72]. They
enhance the 3D sketching with different automatic synthesis algo-
rithms to produce high quality 3D tree models by only sketching the
overall tree shapes. Inspired by those approaches, our system for 3D
building modeling uses freehand 3D sketching to roughly draw the
shape of the building, and then obtains a detailed 3D mesh model
based on the user’s sketches through deep learning and procedural
generation methods.

Deep learning. Deep learning has made great success in many
domains, including object recognition [35, 61], object detection
[25, 52, 53], natural language processing [14, 64], etc. In addition,
recent works devised a number of neural networks for processing
3D data. For example, PointNet [50] and its variations [49, 51] have
successfully solved the classification and segmentation problems for
point sets.

3 OVERVIEW

Fig. 2 (a,b) shows the hardware environment and user workspace of
BuildingSketch. Wearing a VR headset, the user freely draws 3D
strokes in mid-air using his/her fingers, while the finger movements
are captured directly by a Leap Motion controller attached to the
front of the VR headset. Fig. 2 (c) shows the control panel with a
couple of buttons that are frequently used while designing buildings.
The three buttons on the Basic panel are used for switching between
different operation modes: starting/finishing drawing, generating
geometry model, and moving building objects. In drawing mode, the
user draws strokes using a pinch gesture. The system distinguishes
whether the user is drawing a stroke or just moving hands by the

330

Figure 3: Pipeline of our method. A recognition network is used
to identify the object type from user-drawn strokes. The detailed
geometry is then synthesized by procedural generation according to
the predicted type as well as the 3D shape of strokes. Note that if the
strokes are recognized as ’freeform’, they will be divided into straight
lines and curves using a segmentation network.

‘

distance between the thumb and index finger. If the distance is less
than a tiny threshold, the system knows the user is drawing a stroke.
If a recently drawn stroke is wrong or bad, the user can delete it by
pressing the Cancel button. When the Generate button is pressed,
the strokes are interpreted by the neural network automatically and
then the building geometry is created in real time. When the Move
button is pressed, the user can interact with the gray widgets attached
to each building object to move and rotate them. Furthermore, the
Appearance panel provides options to adjust the building appearance
and procedural parameters, such as wall texture, window type, and
floor height, etc.

BuildingSketch is designed to generate building models from
very few 3D strokes, and Fig. 3 illustrates the pipeline of our 3D-
sketch-based building modeling approach. The user first sketches a
few 3D strokes to outline the shapes of the desired building objects.
To interpret the shapes they draw, we use a deep neural network
to recognize object types (i.e., building mass, roof, stair) from the
strokes. The detailed building models are then synthesized using a
procedural modeling method according to the predicted types and
stroke shapes. A number of object types are supported, including
different building masses, roofs, as well as stairs (see Fig. 4). The
users can arbitrarily place and assemble those objects to produce
buildings with more complex structures. In addition, BuildingSketch
also allows the user to model freeform building masses (Fig. 4 (c)),
by sketching irregular strokes to specify the shape of top floor. To
achieve this, if current strokes are recognized as a freeform building
mass, a PointNet is utilized to segment the stroke to get a set of
planar and curved facades that together form the whole freeform
building mass.

4 BUILDING CREATION FROM 3D STROKES

4.1 Object Recognition from Strokes

A stroke is a sequence of successive 3D points with variable length,
which can be considered as spacetime data. A lot of work has been
done to solve the recognition problem through CNNs [35,52,53,61],
but these methods mainly deal with 2D images and the input size is
fixed once the network is trained. Therefore, they are not suitable
for 3D strokes.

Recently, recurrent neural networks (RNN) have become one of
the most common choices to process and classify the time series
data, and are suitable to tasks such as handwriting and speech recog-
nition [22, 41]. Therefore, we designed an RNNs-based recognition
network to infer the intended object types from 3D strokes.

The network takes a varying number of strokes as input, and
outputs the best matching object type. In our implementation, we

Figure 4: Predefined types of building blocks and corresponding key
strokes. For each type, we show the user-drawn strokes and the
corresponding 3D models.

Figure 5: Structure of the recognition network for recognizing the
object type from user-drawn strokes.

first concatenate current strokes into a single sequence of points
(xi,yi,zi,si), where (xi,yi,zi) is the coordinate of ith point, and
si = 0,1,2, ... indicates on which stroke this point is originally lo-
cated. As a preprocessing, we normalize the points to be zero mean
and within a unit sphere before feeding them to the recognition
network. The output of network is a N-dimensional vector (N=10),
which represents the classification scores of the N categories. By
default, the object type with the highest score is selected to generate
corresponding geometry.

Fig. 5 illustrates in detail the structure of our recognition network.
The network consists of common neural blocks, including LSTMs
[26] for processing variable-length input, and fully connected Layers
(FCs) for regression. Here, the LSTM is a specific RNN structure
that can solve long time lag problems better than conventional RNNs
[27]. Each layer is followed by leaky ReLU as the activation function
except the output layer utilizes the sigmoid activation to get the final
results. We adopt the categorical cross entropy as the loss function
which is widely used in multi-class classification problem, that is,

331

Figure 6: Segmentation of freeform strokes using PointNet. (a) A
freeform stroke that depicts the top floor of a building. (b) The segmen-
tation results using PointNet (green: curve-points, blue: line-points,
red: corner-points). (c) The generated building mass.

Lcce =−
N

∑
i=1

pi · logp̂i (1)

where pi and p̂i are the ground-truth and the predicted score
for each class i. During the training process, we use the Adam
optimizer [34] with an initial learning rate of 0.001 and a batch size
of 16 to optimize our network.

4.2 Freeform Stroke Segmentation
While creating a building mass, the user is able to sketch a stroke
to specify the shape of its top floor, and optionally draw several
downward strokes to depict the facades (details are introduced in
Sec. 4.3). To improve expressiveness, BuildingSketch allows users
to design freeform building masses by sketching the top strokes with
irregular shapes (see Fig. 4 (c)). However, unlike other object types
that have regular geometric structures and can be easily fitted, the top
strokes of freeform building masses are usually arbitrarily shaped.
It is difficult to form the corresponding facades directly from such
strokes. To solve the problem, we assume a freeform stroke can be
decomposed into a set of relatively regular segments, i.e, straight
lines and curves. Therefore, the top strokes are first automatically
divided into smaller segments, from each of which the facades are
subsequently generated and together form the final building mass.

PointNet [50] is a highly efficient and effective end-to-end net-
work for point set segmentation, and thus it is well-suited for our task
by considering a stroke as a set of 3D points. We classify the points
into 3 categories according to their local features, i.e, the corner-
points, curve-points and line-points. We basically adopt the original
PointNet architecture. The network is set to handle up to 500 points
with zero-padding to ensure that strokes have the same number of
points. Our network will output 500×3 scores for each of the 500
points and each of the 3 categories. Fig. 6 (b) shows an example
segmented result by PointNet. The corner-points, curve-points and
line-points are marked in red, green and blue, respectively.

After segmentation, we can subsequently form the top surface of
a freeform building mass. Specifically, the successive line-points
segment are directly fitted into a straight line, while the curve-points
segment are smoothed and resampled using a cubic hermite spline.
As a result, the corresponding building mass is shown in Fig. 6 (c).

4.3 Building Construction
Once the object type of current strokes is identified by the recog-
nition network, our method automatically synthesizes the detailed
geometry that matches the shape of current strokes. The geometrical
parameters, such as the height and tilt angle of facades and roofs,
are obtained directly from the 3D strokes. Afterward, windows and
other ornaments are automatically generated based on a collection
of simple procedural grammars [42].

Figure 7: The hierarchical tree of an example building.

Figure 8: Downward strokes can be used to specify the height and tilt
angle of facades

.

To better manage and assemble multiple building parts, we de-
scribe the buildings using the hierarchical trees (see Fig. 7), where
the root is usually the first sketched object. Once the user sketches a
new object or moves an existing one, the tree structure is updated
immediately according to the current adjacency. Two building parts
will become a group when the minimum distance between their
surfaces is less than a tiny threshold. A snapping support is also
provided to automatically snap together their neighboring surfaces.
Moreover, it’s easy for BuildingSketch to model a building complex
using multiple hierarchical trees. A new tree is created if no adjacent
objects exist around a new stroke.

In the following, we illustrate in detail the geometry generation
for each object type.

Building mass. Our current implementation includes three types
of building masses, i.e., the cuboid, cylinder, and freeform objects
(the first row in Fig. 4). The users are allowed to sketch a stroke
to depict the shape of the top floor, and optionally draw several
downward strokes to specify the height and tilt angle for each facade.
The drawing order of strokes can be arbitrary, since the top stroke
can be directly located according to their Y-positions.

The top floor of the building mass is constructed from the user-
drawn top stroke through planar shape fitting. The top stroke points
are first projected onto the horizontal plane, and then fitted by a
rectangle, an ellipse, or straight lines and cubic hermite splines for
cuboid, cylinder, or freeform-shaped building mass, respectively,
based on the stroke type. For the cuboid-shaped building mass,
we perform the rotating calipers algorithm [59] for its top stroke

332

Figure 9: Variations of the building roof generated from different
strokes and roof combinations. (a-d) Four roofs generated from dif-
ferent 3D strokes. (e) A complex roof composed of a set of primitive
roofs

.

Figure 10: Loss curves of our recognition and segmentation networks.

to obtain the minimum area rectangle as the top surface. For the
cylinder-shaped building mass, its top surface is generated directly
through ellipse fitting based on the least squared algorithm [19]. For
freeform-shaped building mass, the top stroke is fitted by lines and
splines for each segment as discussed in Sec. 4.2.

The building facades are constructed from downward strokes.
Fig. 8 shows the effect of using different number of downward
strokes. In the simplest case, if the users only sketch the top stroke,
the resulting facades are vertical, and the building height is set to
reach the ground or the top floor of a lower building (see. Fig. 8 (a)).
Moreover, as shown in Fig. 8 (b-e), the potential downward strokes
can be used to create more facade variations, for example the tilted
facades. The facade is created by fitting a plane to the downward
stroke and it’s nearest top stroke segment, and the building height is
computed as the average height of all downward strokes.

Roof. As shown in Fig. 4 (d-i), BuildingSketch supports multiple
roof types. For each type, we perform specific drawing style to
depict its overall shape feature, which can be effectively identified
by our recognition network. For example, to create a conical roof
(Fig. 4 (e)), we use two downward strokes to draw its lateral surface,
and the corresponding roof geometry is then generated according to
3D stroke structures. The users don’t need to draw strictly regular
or symmetric roof shapes. Instead, free drawing of strokes can help
to produce more roof variations, such as the four roofs in Fig. 9 (a)
to (d), which can be easily obtained by mid-air drawing from our
basic roof types. Moreover, as shown in Fig. 9 (e), the users can
also flexibly assemble simple roofs together to form a more complex
shape.

The real roofs are generally associated with the top floor of the
building mass. Therefore, the bottom of roof will be adjusted auto-
matically to fit the shape of the building below, if they are closed
enough and meanwhile their two object types are compatible, such

as the cuboid building with the hip roof, or the cylinder building
with the dome roof. In other cases where the two object types are
not consistent with each other, we simply attract the bottom points
in roof to the neighboring building edges if their distance is within a
small threshold.

Stairs. The staircases are created in a simple way. Fig. 4 (g)
shows an example of the user drawn stroke and its resulting stairs.
We use wave strokes to represent the stairs, and only generate them
closely attached to the facades. Note that the wavy shape of the
stroke is only used to indicate its type, and the actual number of
turns in the stair is the same as the floor number of the facade to
which the stair is attached.

5 RESULTS

BuildingSketch consists of two parts: a modeling client for user
interaction, and a deep learning server to process the prediction
requests from client. The client is implemented in C# with Unity,
while the server as well as two networks are written in Python with
Tensorflow. All the modeling results were obtained on a PC with 3.4
GHz i7-6800K CPU.

5.1 Network Training
Training. We first discuss the training details and performance. Of-
fline training runs on a NVIDIA GeForce 1080 Ti GPU. To improve
the learning ability, we augment the data by jittering and random
rotation around up-axis during each training step. The loss curves of
two networks are shown in Fig. 10.

To train the recognition network, we constructed 4.5k paired
samples in total (500 for each object type). Especially for building
mass data, 30% are sketched with only top face, while the rest of
them have one or more vertical strokes to depict their facades. We
also made 500 samples as the test set. As a result, the net has 99.8%
prediction accuracy for training set and 97.6% for test set.

For PointNet, we labeled 3.4k freeform strokes as the training set,
and 300 as test set. The final segmentation accuracy for training and
test set are 96.9% and 95.2%, respectively. Fig. 12 shows several
examples of segmentation and resulting models. Most of points are
accurately segmented, which demonstrates the robustness of our
network. In addition, to reduce the effect of wrong prediction, we
perform the noise removal by directly discarding the small line and
curve segments with less than 3 points.

It takes about 1h and 6h for training the recognition network
and the PointNet, respectively. However, even though they may
require many hours for training, once the networks are trained,
the recognition and segmentation for strokes can be done within
a second (average 150ms). Therefore, they are very suitable for
real-time interaction.

5.2 Modeling Results
In this section, we conducted several experiments to demonstrate
the modeling abilities of BuildingSketch.

As shown in Fig. 11, we create a variety of complex shaped
buildings by making full use of our provided functions. All results
are assembled from multiple building parts which are progressively
sketched by mid-air sketching. Among them, we randomly create
freeform building masses, and choose objects to make tilted facades.
Note that the green building in (c) and the cross-shaped one in (e) are
impossible for existing 2D sketch based systems [10, 44] to create,
since their shapes heavily rely on direct 3D interaction and freeform
sketching. Moreover, the arbitrary combination of objects in (d) and
(g) also demonstrates the flexibility of our 3D interaction.

In Fig. 13, we also tried to reproduce a set of buildings by using
real photographs. In terms of overall shapes, the resulting models
bear good resemblance with target photos. Even for the building
with radical shape in (e), our method can effectively recover its tilted
facades and complex topology by 3D interactions.

333

Figure 11: Example buildings created using BuildingSketch.

Figure 12: Stroke segmentation results and corresponding 3D build-
ings. The last row shows a case where a corner is incorrectly recog-
nized as a line-point.

In addition, due to the benefit of 3D interaction, our method
enables the users to adopt different combinations to obtain more
variations. Fig. 14 shows several buildings that are combined from
the same object parts through arbitrarily moving and rotating the
object parts.

Overall, each building takes about 1-6 minutes to create, which
depends on the complexity of its structure. In Tab. 1, we recorded the
statistics of some selected buildings. The total generation time equals
the sum of time for network prediction and geometry construction.

We notice that the most time-consuming step is to design shapes
and sketch strokes, especially for the buildings that consist of a
large number of building blocks. However, it’s real-time to form the
geometry for each object part without taking into account the user’s
thinking and sketching time.

Table 1: Statistics of several buildings. Note that the total time counts
the whole process including interactions, while the total computation
time is only the sum of geometry generation time for each object.

Number of strokes
Total time

[min]
Total computation time

[sec]
Fig. 11 (a) 9 2.6 0.74

Fig. 11 (b) 16 3.2 0.93

Fig. 11 (c) 15 4.6 0.86

Fig. 11 (e) 3 0.73 0.45

Fig. 11 (g) 13 4.1 1.12

5.3 Comparison
Traditional procedural methods [42,57] automatically generate build-
ings mainly based on rules and grammars. However, they require the
users to equip with expertise knowledge of architecture. For novice
users, it’s difficult to write proper rules to obtain desired buildings.
Moreover, the generation process is fully automatic and thus hard
for users to control and interfere. Our method, however, provides
easy-to-use 3D interactions for users to design buildings without too
much effort.

We then compare with a recent 2D sketch-based modeling ap-
proach for buildings [44] (see Fig. 15). This method enables the
users to sketch 2D strokes, and then finds a grammar that can yield
similar shape from a pre-defined grammar set. However, their gram-
mar set only supports simple basic shapes, like cube, ’L’-shape and
’H’-shape. As shown in Fig. 15 (a), their method fails when the
sketched shapes do not exist in their pre-defined grammar set. Our
approach, however, can successfully generate correct 3D freeform
shapes from irregular strokes (see Fig. 15 (b)). Second, their method
asks the users to draw from fixed viewing orientation and position,

334

Figure 13: Modeling results inspired by photographs.

Figure 14: Various modeling results generated by different combinations of the same set of building blocks.

and simply generates vertical facades. Our method, by contrast,
supports direct 3D sketching and viewing, which makes it possible
to generate tilted facades such as the one inside the dashed box of
Fig. 15. Moreover, their method requires the users to sketch almost
full details of their intended shape, including the bottom edges and
every visible vertical line. And therefore they cannot be applied to in-
complete sketches, for example the ones in Fig. 8. Their method also
trained 30 CNNs in total to estimate parameters of each grammar,
which can be extremely costly in terms of computational resources.
However, BuildingSketch bears limitation compared to Nishida’s
system as well. Our current implementation uses too many buttons
to adjust the appearance so that limited choices of the building styles
are provided. A more expressive user interface is still necessary for
appearance control in the future.

5.4 User Evaluation

To gather feedback and evaluate BuildingSketch, we recruited 10
participants (aged 20 to 32) from local university. They major in
computer science and didn’t have any experience of 3D modeling
before. Besides briefly introducing the study goals and procedure,
we also provided the tutorial regarding the usage and all functions
of BuildingSketch.

First, the participants were asked to arbitrarily design buildings
they desired to create (see Fig. 16 for typical example results). We

Table 2: Subjective scores for the ten questions of the System Usability
Scale (SUS) questionnaire (mean and standard deviation), with 1
being “strongly disagree” and 10 being “strongly agree”

.

Question Score

(1) I would like to use this system frequently. 7.8 (0.7)

(2) The system is unnecessarily complex. 1.2 (0.5)

(3) The system is easy to use. 8.4 (0.5)

(4) I would need the support of a technical person to master

the system.
2.7 (0.4)

(5) The various functions in this system are well integrated. 8.9 (0.5)

(6) There was too much inconsistency in this system. 1.7 (0.3)

(7) The system is easy to learn for most people. 8.0 (0.6)

(8) I found the system very cumbersome to use. 1.4 (0.2)

(9) I felt very confident using the system. 9.0 (0.6)

(10) I needed to learn lots of things before I could get going

with this system.
1.5 (0.4)

conducted a short interview with them after use, and asked them to
rate BuildingSketch on ten criteria using the System Usability Scale
(SUS) questionnaire [9] (1=strongly disagree, 10=strongly agree).
The summary results are shown in Tab. 2. As a result, we are happy
to see that the participants were generally positive about our model-
ing system. The subjective scores indicates that BuildingSketch is
easy to learn (Q7, mean=8.0, sd=0.6) and easy to use (Q3, mean=8.4,

335

Figure 15: Comparison with Nishida’s 2D-sketch-based modeling [44].
(a) Nishida’s method fails when the user draw shapes with smooth
curves. And it can only generate vertical facades. (b) Our approach
can effectively generate freeform shapes from fewer strokes. Also, the
tilted facade inside the dash box can be easily created by a downward
3D stroke.

Figure 16: Example buildings freely created by participants for user
study

.

sd=0.5). All participants were satisfied with their modeling results,
and stated that the 3D sketching does facilitate the easy creation
of buildings. BuildingSketch provided various functions for users,
and they were well integrated together (Q5, mean=8.9, sd=0.5) so
that the users didn’t need to pay too much for getting going with
the system (Q10, mean=1.5, sd=0.4). Seven participants specially
expressed excitement about the auto-recognition of the interaction
intention, as well as the way to create freeform building shapes. For
instance, one participant (P3) remarked, “The intention recognition
from 3D strokes impressed me the most, it effectively simplified my
design process. Meanwhile I was attracted by the instantaneous
display and the direct visual manipulation of the generated building
models, which could ensure my interaction consistency with the
system.” Furthermore, the progressive creation of buildings with
intuitive interactions seemed to make participants enjoy the model-
ing procedure. For example, one participant (P5) commented, “To
create buildings in such an expressive manner is like playing a game.
I can create fancy buildings while having fun.”

In addition, we also devised a simple experiment to ask partici-
pants to reconstruct a building according to a target image. Fig. 17
shows some of the resulting models. We marked each building
block with different colors so as to clearly see how users create the
building by combining different building blocks. In terms of over-
all shapes, all participants successfully created buildings that bear

Figure 17: User study excerpts. 3D models created by 4 participants
according to a target building. The building blocks are marked with
different colors to distinguish how different participants decompose
the building.

good resemblance with the target in a short time. The results also
indicated people generally tended to observe and comprehend the
building shapes in different levels, and that they could freely explore
diverse design ways using BuildingSketch when creating buildings.
However, we also identified some usability issues of BuildingSketch.
For example, one participant (P8) noted, “It’s easy for me to obtain
the desired overall shapes with current system, but it provided few
choices of window and wall styles, which made it difficult to fully
recover all details when I tried to reconstruct an existing building
from a photograph, especially for this kind of building that adopted
special window patterns.” One nearsighted participant (P1) also
pointed out another problem that wearing glasses with a VR headset
after a long time would make him kind of uncomfortable.

6 CONCLUSION AND FUTURE WORK

Building modeling is motivated by a wide range of applications in
computer graphics, computer vision, and virtual reality. Procedural
modeling and 2D-Sketch-based modeling dominate 3D building de-
sign in current practice, where designers have to divert a lot of energy
from ideation and concept design to draw details or design gram-
mars. Recent developed VR-based modeling tools are not designed
for building modeling and require tedious drawing and editing to
create user-desired buildings. In this paper, we propose a novel
freehand sketching interface, BuildingSketch, to create 3D buildings
intuitively. BuildingSketch can generate 3D building models as the
user desired progressively from very few 3D strokes with the aid
of deep learning and procedural modeling methods. The user can
also freely move, rotate, and combine the created models to form a
new complex building. A variety of created building models and the
user study show the ease of use for novice users, effectiveness, and
efficiency of BuildingSketch.

Currently, BuildingSketch creates buildings from sketches and
a combination of small building blocks. In the future, we will
add virtual sculpting to the system to facilitate the production of
more elaborate building geometries such as recessed parts as well as
curved facades.

ACKNOWLEDGMENTS

This work was supported in part by NSFC (61972388), Shenzhen
Basic Research Program (JCYJ20180507182222355), the Leading
Talents of Guangdong Program (00201509), and the CAS grant
(GJHZ1862).

REFERENCES

[1] R. Arora, R. H. Kazi, F. Anderson, T. Grossman, K. Singh, and G. W.

Fitzmaurice. Experimental evaluation of sketching on surfaces in

336

vr. In CHI Conference on Human Factors in Computing Systems, pp.

5643–5654, 2017.

[2] R. Arora, R. H. Kazi, T. Grossman, G. Fitzmaurice, and K. Singh.

Symbiosissketch: Combining 2d & 3d sketching for designing detailed

3d objects in situ. In CHI Conference on Human Factors in Computing
Systems, pp. 1–15, 2018.

[3] M. D. Barrera Machuca, P. Asente, W. Stuerzlinger, J. Lu, and B. Kim.

Multiplanes: Assisted freehand vr sketching. In The Symposium on
Spatial User Interaction, pp. 36–47, 2018.

[4] M. D. Barrera Machuca, W. Stuerzlinger, and P. Asente. The effect of

spatial ability on immersive 3d drawing. In The 2019 on Creativity and
Cognition, pp. 173–186. 2019.

[5] M. D. Barrera Machuca, W. Stuerzlinger, and P. Asente. Smart3dguides:

Making unconstrained immersive 3d drawing more accurate. In 25th
ACM Symposium on Virtual Reality Software and Technology, 2019.

[6] S. Bhattacharjee and P. Chaudhuri. A survey on sketch based content

creation: from the desktop to virtual and augmented reality. Computer
Graphics Forum, 39(2):757–780, 2020.

[7] U. Bohari and T.-J. Chen. To draw or not to draw: recognizing stroke-

hover intent in non-instrumented gesture-free mid-air sketching. In

23rd International Conference on Intelligent User Interfaces, pp. 177–

188, 2018.

[8] C. Brenner. Building reconstruction from images and laser scanning. In-
ternational Journal of Applied Earth Observation and Geoinformation,

6(3-4):187–198, 2005.

[9] J. Brooke et al. Sus-a quick and dirty usability scale. Usability evalua-
tion in industry, 189(194):4–7, 1996.

[10] C.-Y. Chen and I.-C. Lin. Rapid 3d building modeling by sketching.

In ACM SIGGRAPH 2019 Posters, pp. 1–2. 2019.

[11] X. Chen, S. B. Kang, Y.-Q. Xu, J. Dorsey, and H.-Y. Shum. Sketching

reality: Realistic interpretation of architectural designs. ACM Trans.
Graph, 27(2), 2008.

[12] X. Chen, B. Neubert, Y.-Q. Xu, O. Deussen, and S. B. Kang. Sketch-

based tree modeling using markov random field. ACM Trans. Graph.,
27(5), 2008.

[13] B. R. De Araùjo, G. Casiez, and J. A. Jorge. Mockup builder: direct 3d

modeling on and above the surface in a continuous interaction space.

In Graphics Interface, pp. 173–180, 2012.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[15] T. Drey, J. Gugenheimer, J. Karlbauer, M. Milo, and E. Rukzio. Vrs-

ketchin: Exploring the design space of pen and tablet interaction for

3d sketching in virtual reality. In CHI Conference on Human Factors
in Computing Systems, pp. 1–14, 2020.

[16] K. Eissen and R. Steur. Sketching: Drawing techniques for product
designers (11 ed.). BIS Publishers, 2009.

[17] FACEBOOK. Quill. https://quill.fb.com/, 2019.

[18] L. Feng, X. Yang, and S. Xiao. Magictoon: A 2d-to-3d creative cartoon

modeling system with mobile ar. In IEEE VR, pp. 195–204, 2017.

[19] A. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least square fitting of el-

lipses. IEEE Transactions on pattern analysis and machine intelligence,

21(5):476–480, 1999.

[20] D. Giunchi, S. James, and A. Steed. 3d sketching for interactive

model retrieval in virtual reality. In The Joint Symposium on Com-
putational Aesthetics and Sketch-Based Interfaces and Modeling and
Non-Photorealistic Animation and Rendering, pp. 1–12, 2018.

[21] GOOGLE. Tilt brush. https://www.tiltbrush.com/, 2017.

[22] A. Graves, N. Jaitly, and A.-r. Mohamed. Hybrid speech recognition

with deep bidirectional lstm. In 2013 IEEE workshop on automatic
speech recognition and understanding, pp. 273–278, 2013.

[23] GravitySketch. Gravitysketch. https://www.gravitysketch.

com/, 2018.

[24] X. Han, C. Gao, and Y. Yu. Deepsketch2face: A deep learning based

sketching system for 3d face and caricature modeling. ACM Trans.
Graph, 36(4), 2017.

[25] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In ICCV,

pp. 2961–2969, 2017.

[26] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[27] S. Hochreiter and J. Schmidhuber. Lstm can solve hard long time lag

problems. In Advances in neural information processing systems, pp.

473–479, 1997.

[28] H. Huang, M. Michelini, M. Schmitz, L. Roth, and H. Mayer. Lod3

building reconstruction from multi-source images. The International
Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, 43:427–434, 2020.

[29] J. Huang and R. Rai. Conceptual three-dimensional modeling us-

ing intuitive gesture-based midair three-dimensional sketching tech-

nique. Journal of Computing and Information Science in Engineering,

18(4):041014, 2018.

[30] K. Huo and K. Ramani. Window-shaping: 3d design ideation by

creating on, borrowing from, and looking at the physical world. In

The Eleventh International Conference on Tangible, Embedded, and
Embodied Interaction, pp. 37–45, 2017.

[31] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface

for 3d freeform design. In SIGGRAPH, pp. 409–416, 1999.

[32] R. H. Kazi, T. Grossman, H. Cheong, A. Hashemi, and G. W. Fitzmau-

rice. Dreamsketch: Early stage 3d design explorations with sketching

and generative design. In ACM Symposium on User Interface Software
and Technology, pp. 401–414, 2017.

[33] D. F. Keefe, D. A. Feliz, T. Moscovich, D. H. Laidlaw, and J. J. LaVi-

ola Jr. Cavepainting: a fully immersive 3d artistic medium and inter-

active experience. In The symposium on Interactive 3D graphics, pp.

85–93, 2001.

[34] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural
information processing systems, 25:1097–1105, 2012.

[36] F. Lafarge and C. Mallet. Building large urban environments from

unstructured point data. In ICCV, pp. 1068–1075, 2011.

[37] T. Lechner, P. Ren, B. Watson, C. Brozefski, and U. Wilenski. Procedu-

ral modeling of urban land use. In ACM SIGGRAPH Research posters,

pp. 135–es. 2006.

[38] B. Li, Y. Lu, A. Ghumman, B. Strylowski, M. Gutierrez, S. Sadiq,

S. Forster, N. Feola, and T. Bugerin. 3d sketch-based 3d model retrieval.

In the 5th ACM on International Conference on Multimedia Retrieval,
pp. 555–558, 2015.

[39] Z. Liu, C. Shen, Z. Li, T. Weng, O. Deussen, Z. Cheng, and D. Wang.

Interactive modeling of trees using vr devices. In International Confer-
ence on Virtual Reality and Visualization, pp. 69–75, 2019.

[40] S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. Treesketch:

Interactive procedural modeling of trees on a tablet. In International
Symposium on Sketch-Based Interfaces and Modeling, pp. 107–120,

2012.

[41] R. Messina and J. Louradour. Segmentation-free handwritten chinese

text recognition with lstm-rnn. In 13th International Conference on
Document Analysis and Recognition, pp. 171–175, 2015.

[42] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural

modeling of buildings. ACM Trans. Graph., 25(3):614–623, 2006.

[43] L. Nan, A. Sharf, H. Zhang, D. Cohen-Or, and B. Chen. Smartboxes

for interactive urban reconstruction. ACM Trans. Graph, 29(4), 2010.

[44] G. Nishida, I. Garcia-Dorado, D. G. Aliaga, B. Benes, and A. Bousseau.

Interactive sketching of urban procedural models. ACM Trans. Graph,

35(4), 2016.

[45] OculusMedium. Oculusmedium. https://oculus.com/medium/,

2016.

[46] D. J. Olsen, N. D. Pitman, S. Basak, and B. C. Wünsche. Sketch-based

building modelling. In GRAPP, pp. 119–124, 2011.

[47] Y. I. Parish and P. Müller. Procedural modeling of cities. In The 28th
annual conference on Computer graphics and interactive techniques,

pp. 301–308, 2001.

[48] H. Perkunder, J. H. Israel, and M. Alexa. Shape modeling with sketched

feature lines in immersive 3d environments. In the Seventh Sketch-
Based Interfaces and Modeling Symposium, pp. 127–134, 2010.

[49] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum pointnets

for 3d object detection from rgb-d data. In CVPR, pp. 918–927, 2018.

[50] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning

on point sets for 3d classification and segmentation. In CVPR, pp.

337

652–660, 2017.

[51] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical

feature learning on point sets in a metric space. In International
Conference on Neural Information Processing Systems, pp. 5105–5114,

2017.

[52] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look

once: Unified, real-time object detection. In CVPR, pp. 779–788, 2016.

[53] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time

object detection with region proposal networks. Advances in neural
information processing systems, 28:91–99, 2015.

[54] E. Rosales, J. Rodriguez, and A. Sheffer. Surfacebrush: From virtual

reality drawings to manifold surfaces. ACM Trans. Graph., 38(4),

2019.

[55] A. Sampath and J. Shan. Segmentation and reconstruction of polyhedral

building roofs from aerial lidar point clouds. IEEE Transactions on
geoscience and remote sensing, pp. 1554–1567, 2009.

[56] S. Schkolne, M. Pruett, and P. Schröder. Surface drawing: creating or-

ganic 3d shapes with the hand and tangible tools. In SIGCHI conference
on Human factors in computing systems, pp. 261–268, 2001.

[57] M. Schwarz and P. Müller. Advanced procedural modeling of architec-

ture. ACM Trans. Graph, 34(4), 2015.

[58] M. Schwärzler, L.-M. Kellner, S. Maierhofer, and M. Wimmer. Sketch-

based guided modeling of 3d buildings from oriented photos. In ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp.

1–8, 2017.

[59] M. I. Shamos. Computational geometry. Yale University, 1978.

[60] ShapeLab. Shapelab. https://store.steampowered.com/app/

571890/ShapeLab/, 2018.

[61] K. Simonyan and A. Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[62] S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys.

Interactive 3d architectural modeling from unordered photo collections.

ACM Trans. Graph, 27(5):1–10, 2008.

[63] N. Smith, N. Moehrle, M. Goesele, and W. Heidrich. Aerial path

planning for urban scene reconstruction: A continuous optimization

method and benchmark. ACM Trans. Graph., 37(6), 2018.

[64] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning

with neural networks. In Advances in neural information processing
systems, pp. 3104–3112, 2014.

[65] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch, and V. Koltun.

Metropolis procedural modeling. ACM Trans. Graph., 30(2):1–14,

2011.

[66] TiltBrush. Google tiltbrush. https://tiltbrush.com/, 2018.

[67] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architecture.

ACM Trans. Graph, 22(3):669–677, 2003.

[68] J. Xiao, T. Fang, P. Zhao, M. Lhuillier, and L. Quan. Image-based

street-side city modeling. ACM Trans. Graph., 28(5), 2009.

[69] C. Yang, D. Sharon, and M. van de Panne. Sketch-based modeling of

parameterized objects. In ACM SIGGRAPH Sketches, pp. 89–es, 2005.

[70] Q. Yuan and Y. Huai. Immersive sketch-based tree modeling in virtual

reality. Computers & Graphics, 94:132–143, 2021.

[71] Y.-T. Yue, X. Zhang, Y. Yang, G. Ren, Y.-K. Choi, and W. Wang.

Wiredraw: 3d wire sculpturing guided with mixed reality. In CHI
Conference on Human Factors in Computing Systems, pp. 3693–3704,

2017.

[72] F. Zhang, Z. Liu, Z. Cheng, O. Deussen, B. Chen, and Y. Wang. Mid-air

finger sketching for tree modeling. In IEEE VR, pp. 826–834, 2021.

[73] L. Zhu, S. Shen, X. Gao, and Z. Hu. Large scale urban scene modeling

from mvs meshes. In ECCV, pp. 614–629, 2018.

338

